Towards Omni-Supervised Face Alignment for Large Scale Unlabeled Videos

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Supervised Hierarchical Feature Learning for Face Recognition

This paper proposes a novel face recognition algorithm based on large-scale supervised hierarchical feature learning. The approach consists of two parts: hierarchical feature learning and large-scale model learning. The hierarchical feature learning searches feature in three levels of granularity in a supervised way. First, face images are modeled by receptive field theory, and the representati...

متن کامل

Data Distillation: Towards Omni-Supervised Learning

We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lowerbounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we p...

متن کامل

Extended Supervised Descent Method for Robust Face Alignment

Supervised Descent Method (SDM) is a highly efficient and accurate approach for facial landmark locating/face alignment. It learns a sequence of descent directions that minimize the difference between the estimated shape and the ground truth in HOG feature space during training, and utilize them in testing to predict shape increment iteratively. In this paper, we propose to modify SDM in three ...

متن کامل

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

In this section, we present detailed network architecture as well as implementation details, for reproducible research. The network architecture for the reference network (RFNet) and video domain-adapted network (VDNet) are equivalent, as described in Table S1. The network architecture is mainly motivated from [8], but we replace ReLU with maxout units at every other convolution layer to furthe...

متن کامل

Large-Scale Semi-Supervised Learning

Labeling data is expensive, whilst unlabeled data is often abundant and cheap to collect. Semi-supervised learning algorithms that use both types of data can perform significantly better than supervised algorithms that use labeled data alone. However, for such gains to be observed, the amount of unlabeled data trained on should be relatively large. Therefore, making semi-supervised algorithms s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2020

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v34i07.7011